Cho \(I = \int\limits_{ – 1}^0 {\frac{{3{x^2} + 5x – 1}}{{x – 2}}dx} = a\ln \frac{2}{3} + b\). Tính giá trị \(T = a + 2b\).
\(T = 50.\)
Gọi \(S\) là diên tích hình phằng giới hạn bởi đồ thị \(y = f\left( x \right)\),\(y = g\left( x \right)\) và hai đường thẳng \(x = a;x = b\,\,\,\left( {a < b} \right)\). Tính \(S\).
\(S = \int\limits_a^b {\left| {f\left( x \right) + g\left( x \right)} \right|} dx.\)
Công thức nào sau đây là công thức tính nguyên hàm từng phần?
\(\int {udv} = uv' - \int {vdu} .\)
Cho tích phân \(I = \int\limits_0^3 {\frac{x}{{1 + \sqrt {1 + x} }}dx} \). Đặt \(t = \sqrt {1 + x} \) ta được\(I = \int\limits_1^2 {f(t)dt} \). Tìm hàm số \(f\left( t \right)\) trong các phương án sau?
\(f(t) = {t^2} - t.\)
Tìm một nguyên hàm \(F(x)\) của hàm số \(y = \frac{{{x^3}}}{{\sqrt {2 – {x^2}} }}\).
\(F(x) = - \frac{1}{3}{x^2}\sqrt {2 - {x^2}} .\)
Gọi \(V\) là thể tích của khối tròn xoay tạo thành khi ta cho hình phẳng D giới hạn bởi các
đường \(y = f(x)\), trục \(Ox\), \(x = a;x = b\,\,\,\left( {a < b} \right)\) quay quanh trục \(Ox\). Tính \(V\).
\(V = \int\limits_a^b {{{\left( {\pi f(x)} \right)}^2}} dx.\)
Tìm một nguyên hàm \(F(x)\)của hàm số \(y = \frac{{\ln 2x}}{{{x^2}}}\).
\(F\left( x \right) = - \frac{1}{x}\left( {\ln 2x + 1} \right).\)
Tính I = \(\int\limits_0^{\frac{\pi }{3}} {\tan xdx} \) ta được
\(I = \)–ln2.
Tính \(I = \int {x\cos 2xdx} \) là:
\(I = \frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x + C.\)
Cho \(K \subset R\),\(k,h \in R\). Biết \(F\left( x \right),G\left( x \right)\) lần lượt là một nguyên hàm của \(f\left( x \right),g\left( x \right)\) trên tập K. Trong các khẳng định sau, khẳng định nào là khẳng định sai?
\(\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]} dx = F\left( x \right) \pm G\left( x \right) + C.\)
Câu 2. Tính tích phân \(I = \int {{{\left( {{x^2} + 1} \right)}^{10}}x\,dx} \)
B1. Đặt \(t = {x^2} + 1\) B2.\(I = \int {{{\left( {{x^2} + 1} \right)}^{10}}x\,dx} = \int {{t^{10}}.\frac{1}{2}dt} \)
B3. Tính \(dt = 2xdx\) B4. \(I = \frac{1}{2}.\frac{{{t^{11}}}}{{11}} + C\) B5. \(I = \frac{1}{{22}}{\left( {{x^2} + 1} \right)^{11}} + C\)
Hãy sắp xếp các bước của bài giải trên cho đúng thứ tự (có thể bỏ bước không cần thiết).
1-2-3-4-5.
Gọi \(S\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3} – 3{x^2} + 2x\), trục tung, trục hoành, đường thẳng \(x = \frac{3}{2}\). Tính \(S\).
\(S = \frac{{23}}{{64}}\,.\)
Cho tích phân \(I = \int\limits_0^{\frac{\pi }{2}} {{e^{{{\sin }^2}x}}\sin x{{\cos }^3}xdx} \). Đổi biến số \(t = {\sin ^2}x\). Trong các khẳng định sau, khẳng định nào đúng?
\(I = \frac{1}{2}\left( {\int\limits_0^1 {{e^t}dt} + \int\limits_0^1 {t{e^t}dt} } \right).\)
Tính \(I = \int {\frac{{dx}}{{\sqrt {1 – x} }}} \).
\(I = \frac{{ - 2}}{{\sqrt {1 - x} }} + C.\)
Tính I = \(\int\limits_2^3 {\ln ({x^2} – x)dx} \) là
2-3ln3.
Một hạt proton di chuyển trong điện trường có biểu thức gia tốc ( theo \({\rm{cm/}}{{\rm{s}}^2}\) ) là \(a(t) = \frac{{ – 20}}{{{{\left( {1 + 2t} \right)}^2}}}\) (với t tính bằng giây). Tìm hàm vận tốc \(v\) theo t, biết rằng khi \(t = 0\) thì \(v = 30{\rm{ cm/s}}\).
\(\frac{{10}}{{1 + 2t}} + 20.\)
Tìm một nguyên hàm \(F(x)\)của hàm số \(f(x) = 2{{\rm{x}}^2} + 1\).
\(2{x^3} + x + C.\)
Một nguyên hàm của hàm số \(y = 2x\left( {{e^x} – 1} \right)\) là:
\(F\left( x \right) = 2{e^x}\left( {1 - x} \right) - 4{x^2}.\)
Nguyên hàm F(x) của hàm số \(f(x) = 4{x^3} – 3{{\rm{x}}^2} + 2\) trên R thoả mãn điều kiện \(F( – 1) = 3\) là
\({x^4} - {x^3} + 2{\rm{x}} + 3.\)
Biết tích phân \(\int\limits_0^1 {x\sqrt[3]{{1 – x}}} dx = \frac{M}{N}\), với \(\frac{M}{N}\) là phân số tối giản. Tính giá trị \(M + N\).
\(M + N = 37.\)
Tìm nguyên hàm \(F(x)\) của hàm số \(f(x) = 2x – 3\cos x\) thỏa điều kiện \(F\left( {\frac{\pi }{2}} \right) = 3\)
\(F(x) = {x^2} - 3\sin x + 6 - \frac{{{\pi ^2}}}{4}.\)
Tính tích phân \(L = \int\limits_0^\pi {x\sin xdx} \) bằng:
L = 0.
Cho \(\int\limits_1^2 {f\left( x \right)} dx = 2\) và \(\int\limits_2^3 {f\left( x \right)} dx = 3\). Tính \(M = \int\limits_1^3 {f\left( x \right)} dx\).
\(M = - 1.\)
Giả sử \(F(x),\,\;G(x)\) lần lượt là nguyên hàm hàm số \(f(x)\) và \(g(x)\) trên đoạn \(\left[ {a;b} \right]\). Trong các khẳng định sau, khẳng định nào là khẳng định đúng?
\(\int\limits_a^b {f(x)dx} = F\left( a \right) - F(b).\)
Ký hiệu \(V\) là thể tích của khối tròn xoay có được khi quay hình phẳng giới hạn bởi các đường \(x = 0,\,\,x = \frac{\pi }{4},\,\,y = 0,\,\,y = \sin x\) xung quanh trục \(Ox\). Tính \(V\).
\(V = \frac{\pi }{2}\left( {\frac{\pi }{4} + \frac{1}{2}} \right).\)
Kết quả:
Khám phá kho tài liệu học tập chất lượng tại Hocbaitap.com, nơi bạn có thể tìm thấy sách PDF đa dạng thể loại cho mọi cấp độ. Từ bài tập từ cơ bản đến nâng cao, chúng tôi cung cấp đầy đủ nguồn lực để bạn nâng cao kiến thức một cách hiệu quả. Truy cập ngay Hocbaitap.com để bắt đầu hành trình học tập của bạn!
sách học ngoại ngữ pdf, sách học tiếng anh pdf, sách học tiếng hoa pdf, sách học tiếng nhật pdf, sách học tiếng hàn pdf, sách học tiếng pháp pdf, sách học tiếng đức pdf, Sách nuôi dạy con PDF, Sách Cẩm Nang Làm Cha Mẹ PDF, Sách Phát Triển Kỹ Năng - Trí Tuệ Cho Trẻ PDF, Sách Phương Pháp Giáo Dục Trẻ Các Nước PDF, Sách Dinh Dưỡng - Sức Khỏe Cho Trẻ PDF, Sách Giáo Dục Trẻ Tuổi Teen PDF, Sách Dành Cho Mẹ Bầu PDF