Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên
Hàm số đồng biến trên khoảng nào sau đây?
\(\left( { - \infty ;\, - 1} \right)\).
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ.
Tìm khoảng đồng biến của hàm số đã cho.
\(\left( { - 2;0} \right)\).
Cho bảng biến thiên như hình vẽ bên. Hỏi đây là bảng biến thiên của hàm số nào trong các hàm số sau?
\(y = \frac{{x + 2}}{{x - 1}}\).
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình dưới dây.
Hỏi hàm số đã cho đồng biến trên khoảng nào trong các khoảng dưới đây?
\(\left( { - 1;0} \right)\).
Hàm số có đồ thị như hình vẽ.
Hàm số đồng biến trên khoảng nào dưới đây?
\(( - 1;1)\)
Trong các hàm số sau, hàm số nào nghịch biến trên tập xác định của nó ?
\(y = \frac{{x + 1}}{{ - x + 3}}\).
Hàm số \(y = 2{x^4} + 1\) đồng biến trên khoảng nào dưới đây?
\(\left( { - \infty ;0} \right)\)

Tìm khoảng nghịch biến của hàm số \(y = \frac{1}{3}{x^3} – 2{x^2} + 3x – 2\).
\(\left( {1;3} \right)\).
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và \(f'\left( x \right)\) có đồ thị như hình vẽ.
Khẳng định nào sau đây là đúng?
Hàm số đồng biến trên khoảng \(\left( { - 1;1} \right)\).
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) liên tục trên \(\mathbb{R}\). Hàm \(f'\left( x \right)\) có đồ thị như hình vẽ.
Trong các mệnh đề sau, mệnh đề nào đúng
\(f\left( { - 3} \right) < f\left( { - 2} \right)\).
Hàm số \(f\left( x \right)\) nghịch biến trên khoảng \(\left( { – \infty \,;\,{x_1}\,} \right)\), \( – 3 < - 2 < {x_1}\) \( \Rightarrow f\left( { - 3} \right) > f\left( { – 2} \right)\). Nên A sai.Hàm số \(f\left( x \right)\) nghịch biến trên khoảng \(\left( { – \infty \,;\,{x_1}\,} \right)\) , \(\left( { – \infty \,;\, – 1} \right) \subset \left( { – \infty \,;\,{x_1}\,} \right)\)\( \Rightarrow \)hàm số \(f\left( x \right)\) đồng biến trên khoảng \(\left( { – \infty \,;\, – 1} \right)\). Nên B sai.Qua \(x = 0\) đạo hàm \(f'\left( x \right)\) không đổi dấu nên \(x = 0\) không là điểm cực trị. Nên D sai.Hàm số \(f\left( x \right)\) đồng biến trên khoảng \(\left( {\,{x_1}\,\,;\,1\,} \right)\), \({x_1} < 0 < 1\) \( \Rightarrow f\left( 0 \right) < f\left( 1 \right)\).Kết quả:
Khám phá kho tài liệu học tập chất lượng tại Hocbaitap.com, nơi bạn có thể tìm thấy sách PDF đa dạng thể loại cho mọi cấp độ. Từ bài tập từ cơ bản đến nâng cao, chúng tôi cung cấp đầy đủ nguồn lực để bạn nâng cao kiến thức một cách hiệu quả. Truy cập ngay Hocbaitap.com để bắt đầu hành trình học tập của bạn!
sách học ngoại ngữ pdf, sách học tiếng anh pdf, sách học tiếng hoa pdf, sách học tiếng nhật pdf, sách học tiếng hàn pdf, sách học tiếng pháp pdf, sách học tiếng đức pdf, Sách nuôi dạy con PDF, Sách Cẩm Nang Làm Cha Mẹ PDF, Sách Phát Triển Kỹ Năng - Trí Tuệ Cho Trẻ PDF, Sách Phương Pháp Giáo Dục Trẻ Các Nước PDF, Sách Dinh Dưỡng - Sức Khỏe Cho Trẻ PDF, Sách Giáo Dục Trẻ Tuổi Teen PDF, Sách Dành Cho Mẹ Bầu PDF