Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
\(\left( { - 1;0} \right)\).
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình dưới đây. Mệnh đề nào sau đây là đúng?
Hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ; - \frac{1}{2}} \right)\) và \(\left( {3; + \infty } \right).\)
Cho hàm số \(f\left( x \right)\) có đạo hàm là \(f'\left( x \right) = \left( {x – 2} \right)\left( {x + 5} \right)\left( {x + 1} \right)\). Hàm số \(f\left( x \right)\) đồng biến trên khoảng nào dưới đây?
\(\left( {2\,;\, + \infty } \right)\).
Nhìn vào bảng xét dấu của \(f'\left( x \right)\) ta thấy hàm số \(f\left( x \right)\) đồng biến trên các khoảng \(\left( { – 5\,;\, – 1} \right)\) và \(\left( {2\,;\, + \infty } \right)\).Vậy hàm số \(f\left( x \right)\) đồng biến trên khoảng \(\left( {2\,;\, + \infty } \right)\).Đường cong ở hình bên là đồ thị của hàm số \(y = \frac{{ax + b}}{{cx + d}}\) với \(a,b,c,d\) là các số thực. Mệnh đề nào dưới đây đúng?
\(y' < 0,\forall x \ne 1\).
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
\(\left( { - 1\,;\,0} \right)\).
Cho hàm số \(y = f(x)\) có bảng xét dấu đạo hàm như sau:
Hàm số \(y = f(x)\) đồng biến trên khoảng nào dưới đây ?
\(\left( {0\,; + \infty } \right)\).
Hàm số \(y = – {x^4} + 2x{}^2 + 1\) đồng biến trên khoảng nào dưới đây?
\(\left( { - \infty ; - 1} \right)\).
\( \Rightarrow \)Hàm số đồng biến trên \(\left( { – \infty ; – 1} \right)\).Hàm số nào dưới đây đồng biến trên \(\mathbb{R}\)?
\(y = {x^4} - 2{x^2} + 3\).
Cho hàm số \(y = {x^3} – 3x.\) Mệnh đề nào dưới đây đúng?
Hàm số nghịch biến trên khoảng \(\left( { - 1;1} \right)\)
Dựa vào bảng biến thiên ta chọnTìm tất cả giá trị thực của tham số \(m\) để hàm số \(y = \frac{1}{3}{x^3} – 2m{x^2} + (m + 3)x + m – 5\) đồng biến trên \(\mathbb{R}\).
\( - \frac{3}{4} \leqslant m \leqslant 1\).
Kết quả:
Khám phá kho tài liệu học tập chất lượng tại Hocbaitap.com, nơi bạn có thể tìm thấy sách PDF đa dạng thể loại cho mọi cấp độ. Từ bài tập từ cơ bản đến nâng cao, chúng tôi cung cấp đầy đủ nguồn lực để bạn nâng cao kiến thức một cách hiệu quả. Truy cập ngay Hocbaitap.com để bắt đầu hành trình học tập của bạn!
sách học ngoại ngữ pdf, sách học tiếng anh pdf, sách học tiếng hoa pdf, sách học tiếng nhật pdf, sách học tiếng hàn pdf, sách học tiếng pháp pdf, sách học tiếng đức pdf, Sách nuôi dạy con PDF, Sách Cẩm Nang Làm Cha Mẹ PDF, Sách Phát Triển Kỹ Năng - Trí Tuệ Cho Trẻ PDF, Sách Phương Pháp Giáo Dục Trẻ Các Nước PDF, Sách Dinh Dưỡng - Sức Khỏe Cho Trẻ PDF, Sách Giáo Dục Trẻ Tuổi Teen PDF, Sách Dành Cho Mẹ Bầu PDF